16 Anisotropic Extension of the Exchange Factor Transformation
16.1 Introduction
The exchange factor transformation described in Chapter Chapter 9 enables analytical treatment of multiple reflection-scattering processes in radiative transfer by transforming the exchange factor matrix \mathbf{F} into absorption and reflection-scattering matrices \mathbf{A} and \mathbf{R}. The method assumes isotropic reflection-scattering behavior, where the probability of reflection-scattering from element j is independent of the incident element i. This is represented by a column-constant single reflection-scattering matrix \mathbf{B}.
However, many physical systems exhibit anisotropic reflection-scattering, where the probability and directional distribution of reflection-scattering depend on the incident direction. This chapter presents an extension of the exchange factor transformation that accommodates anisotropic reflection-scattering while preserving all fundamental properties: non-negativity, energy conservation, and analytical solvability.
16.2 Anisotropic Reflection-Scattering Matrix
The anisotropic extension introduces a full matrix \mathbf{\Gamma} (Gamma) to characterize directional dependence of reflection-scattering:
\mathbf{\Gamma} \in \mathbb{R}^{N \times N}, \quad 0 \leq \mathbf{\Gamma}_{ij} \leq 1 \quad \forall \; ij \tag{16.1}
where \mathbf{\Gamma}_{ij} represents the relative probability of reflection-scattering from element j when radiation is incident from element i.
16.2.1 Physical Interpretation
- \mathbf{\Gamma}_{ij} = 1: Maximum reflection-scattering from j due to incidence from i (isotropic limit)
- \mathbf{\Gamma}_{ij} = 0: No reflection-scattering from j due to incidence from i (complete directional selectivity)
- 0 < \mathbf{\Gamma}_{ij} < 1: Partial anisotropic reflection-scattering with directional preference
When \mathbf{\Gamma} = \mathbf{1} (all ones), the anisotropic formulation reduces exactly to the isotropic case, ensuring backward compatibility and providing a natural basis for proof by continuity arguments.
16.3 Construction of the Anisotropic Interaction Matrix
The anisotropic interaction-reflection-scattering matrix \mathbf{K} is constructed through a multi-step process that ensures physical consistency.
Step 1: Initial Reflection-Scattering Distribution
Define the initial reflection-scattering distribution matrix:
\mathbf{B}_{\mathrm{init},ij} = \mathbf{b}_j + \mathbf{\Gamma}_{ij} \cdot (1 - \mathbf{b}_j) \tag{16.2}
where \mathbf{b}_j is the reflection-scattering coefficient of element j. This constraint ensures that highly reflecting-scattering element must remain near isotropic while less reflecting-scattering elements can have more anisotropic freedom.
Each column j of \mathbf{\Gamma}_{ij} is scaled by 1-\mathbf{b}_j of the receiving element.
Step 2: Interaction-Reflection-Scattering (Pre-Normalization)
Compute the element-wise product of the exchange factor matrix and the initial reflection-scattering distribution:
\mathbf{K}_{\mathrm{init},ij} = \mathbf{F}_{ij} \cdot \mathbf{B}_{\mathrm{init},ij} = \mathbf{F}_{ij} \cdot \mathbf{\Gamma}_{ij} \cdot (1 - \mathbf{P}_{jj}) \tag{16.3}
This represents the probability that radiation emitted from element i interacts with element j and is then reflected-scattered, before normalization.
Step 3: Enforce Probability Conservation
Create a matrix that accounts for both reflection-scattering and absorption:
\mathbf{U}_{ij} = \mathbf{K}_{\mathrm{init},ij} + \mathbf{F}_{ij} \cdot \mathbf{P}_{jj} \tag{16.4}
Each element either reflects-scatters (\mathbf{K}_{\mathrm{init}}) or is absorbed (\mathbf{F} \cdot \mathbf{P}).
Step 4: Compute Row Sums
Calculate the row sums:
\mathbf{s}_i = \sum_j \mathbf{U}_{ij} = \sum_j (\mathbf{K}_{\mathrm{init},ij} + \mathbf{F}_{ij} \cdot \mathbf{P}_{jj}) \tag{16.5}
Expanding:
\mathbf{s}_i = \sum_j \mathbf{F}_{ij} \cdot (\mathbf{\Gamma}_{ij} \cdot (1-\mathbf{P}_{jj}) + \mathbf{P}_{jj}) \tag{16.6}
Step 5: Normalize to Row-Stochastic
Normalize the matrix to ensure row sums equal unity:
\mathbf{T}_{ij} = \frac{\mathbf{U}_{ij}}{\mathbf{s}_i} \tag{16.7}
This creates a row-stochastic matrix, ensuring that total probability is conserved for radiation emitted from each element i.
Step 6: Final Interaction-Reflection-Scattering Matrix
Extract the reflection-scattering component:
\mathbf{K}_{ij} = \mathbf{T}_{ij} - \mathbf{F}_{ij} \cdot \mathbf{P}_{jj} \tag{16.8}
Substituting from Eq. 16.7:
\mathbf{K}_{ij} = \frac{\mathbf{K}_{\mathrm{init},ij} + \mathbf{F}_{ij} \cdot \mathbf{P}_{jj}}{\mathbf{s}_i} - \mathbf{F}_{ij} \cdot \mathbf{P}_{jj} \tag{16.9}
Simplifying:
\mathbf{K}_{ij} = \frac{\mathbf{K}_{\mathrm{init},ij}}{\mathbf{s}_i} - \mathbf{F}_{ij} \cdot \mathbf{P}_{jj} \left(1 - \frac{1}{\mathbf{s}_i}\right) \tag{16.10}
16.4 Properties of the Row Sum Normalization Factor
16.4.1 Bounds on s
From Eq. 16.6:
\mathbf{s}_i = \sum_j \mathbf{F}_{ij} \cdot (\mathbf{\Gamma}_{ij} \cdot (1-\mathbf{P}_{jj}) + \mathbf{P}_{jj})
Since \mathbf{F} is row-stochastic (\sum_j \mathbf{F}_{ij} = 1), we can write:
\mathbf{s}_i - 1 = \sum_j \mathbf{F}_{ij} \cdot (\mathbf{\Gamma}_{ij} \cdot (1-\mathbf{P}_{jj}) + \mathbf{P}_{jj} - 1) \tag{16.11}
Simplifying:
\mathbf{s}_i - 1 = \sum_j \mathbf{F}_{ij} \cdot (\mathbf{\Gamma}_{ij} - 1) \cdot (1-\mathbf{P}_{jj}) \tag{16.12}
Since \mathbf{\Gamma}_{ij} \leq 1, \mathbf{F}_{ij} \geq 0, and (1-\mathbf{P}_{jj}) \geq 0:
\mathbf{s}_i - 1 \leq 0 \implies \mathbf{s}_i \leq 1 \tag{16.13}
Furthermore, the lower bound \mathbf{P}_{jj} = 1-\mathbf{b}_j > 0 creates the lower bound S > 0, leading to the full bounds on S
0 < \mathbf{s}_i \leq 1
which prevents division by zero in equation (Eq. 16.9) and (Eq. 16.10)
16.4.2 Special Case: Γ = 1 (Isotropic)
When \mathbf{\Gamma} = \mathbf{1} (all ones), we have:
\mathbf{s}_i = \sum_j \mathbf{F}_{ij} \cdot ((1-\mathbf{P}_{jj}) + \mathbf{P}_{jj}) = \sum_j \mathbf{F}_{ij} = 1
Therefore, the normalization does nothing, and:
\mathbf{K}_{ij} = \mathbf{F}_{ij} - \mathbf{F}_{ij} \cdot \mathbf{P}_{jj} = \mathbf{F}_{ij} \cdot (1-\mathbf{P}_{jj})
This recovers the isotropic case exactly: \mathbf{K} = \mathbf{F} \circ \mathbf{B}, where \mathbf{B} is the column-constant matrix of reflection-scattering coefficients.
16.5 Subsequent Transformation
Once \mathbf{K} is constructed, the remainder of the exchange factor transformation proceeds almost identically to the isotropic case:
The steady-state path matrix is given by:
\mathbf{S}_\infty = (\mathbf{I} - \mathbf{K})^{-1} \mathbf{F} \tag{16.14}
The absorption and reflection-scattering matrices are given by the alternate formulation:
\mathbf{A} = \mathbf{P}(\mathbf{I}-\mathbf{K})^{-1}(\mathbf{F}-\mathbf{K}) \tag{16.15}
\mathbf{R} = \mathbf{P}(\mathbf{I}-\mathbf{K})^{-1}\mathbf{K} \tag{16.16}
The system matrice \mathbf{C} and \mathbf{D} are given by:
\mathbf{C} = \mathbf{I} - \mathbf{A}^T - \mathbf{R}^T \tag{16.17}
\mathbf{D} = \mathbf{I} - \mathbf{R}^T \tag{16.18}
The mixed boundary system is solved as:
\mathbf{M}\mathbf{j} = \mathbf{h} \tag{16.19}
where \mathbf{M} is assembled row-by-row from \mathbf{C} (for known sources) and \mathbf{D} (for known emissive powers), and \mathbf{j} is the total radiant power vector.
16.6 Advantages of the Anisotropic Extension
Physical Fidelity: Captures directional dependence of reflection-scattering, enabling more accurate modeling of real materials and surfaces.
Analytical Framework: Maintains the analytical structure of the exchange factor transformation, avoiding iterative Monte Carlo methods.
Backward Compatibility: Reduces exactly to the isotropic case when \mathbf{\Gamma} = \mathbf{1}, ensuring consistency with established methods.
Preserved Properties: Non-negativity and energy conservation are guaranteed (see chapter Chapter 19 for proofs).
Flexibility: Accommodates any anisotropic distribution within the constraint 0 \leq \mathbf{\Gamma}_{ij} \leq 1, providing maximum modeling flexibility.
16.7 Physical Applications
For surfaces with specular components, media with anisotropic scattering phase functions (e.g., Mie scattering, Henyey-Greenstein, i.e. (ij,k)-three-index dependencies) and surfaces with oriented microstructure (e.g., brushed metal, fibrous materials), more complex models are required.
16.8 Conclusion
The anisotropic extension of the exchange factor transformation provides a mathematically rigorous and physically meaningful framework for modeling directional reflection-scattering in radiative transfer. By introducing the anisotropy matrix \mathbf{\Gamma} and employing row-stochastic normalization, the method preserves all essential properties while significantly expanding the range of physical phenomena that can be accurately modeled.